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ABSTRACT

Aim: With the most robust floristic data set for any arid archipelago, we use
statistical modeling to determine the underlying controls of plant diversity and
species composition.

Location: The study was undertaken in the Midriff Islands of the Gulf of California,
Mexico.

Methods: Using the area—diversity relationship we estimate the power coefficient z
with generalized linear models (GLM). We tested eight predictors (area, human
presence, habitat diversity, topography, distance to mainland, island type,
precipitation, and seabird dynamics) using a step-wise process on the same GLM
procedure. Plant species composition was assessed by conducting a non-standardized
principal component analysis on a presence-absence matrix of the 476 (plant species) x
14 (islands). Finally, families were tested for over or under representation

with a X> analysis subjected to a Bonferroni correction.

Results: The classic species-area model explained 85% of the variance in island plant
diversity and yielded a slope (z) of 0.303 (£0.01). When the effect of area is removed,
four additional factors were shown to account for observed variation; habitat
diversity (34%), seabird dynamics (23%), island type (21%), topography (14%).
Human presence and distance to mainland were not predictors of species richness.
Species composition varies significantly with island area; small islands have a
particular flora where certain families are overrepresented, such as Cactaceae, while
the flora of larger islands is strongly dependent on the continental source.

Main conclusions: The factors that control diversity levels are expressions of
geology, landscape heterogeneity, and land-sea connections. Species assemblages in
small islands are governed by copious marine nutrients in the form of guano that
depress species diversity. Distance to mainland and human presence hold no
predictive power on diversity. The results show these islands to be isolated arid
ecosystems with functioning ecological networks.

Subjects Biogeography, Conservation Biology, Ecology, Biosphere Interactions
Keywords Community composition, Cultural dispersal, Land-sea connections, Islands, Island
biogeography, Species diversity

INTRODUCTION

Islands have figured prominently in many of the greatest scientific advances in what
Darwin termed the mystery of mysteries, the appearance of life in geologically recent
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environments (Darwin, 1860). The web of ecological complexity is simplified on island
systems. Variables are reduced and responses and adaptations to causal factors are evident,
allowing insights that are blurred elsewhere (Wallace, 1880). Driven by similar curiosities
and a desire to harness the power of islands as model systems, Robert MacArthur and
Edward O. Wilson changed the landscape of ecological thinking with their book

The Theory of Island Biogeography (MacArthur ¢» Wilson, 1967). They proposed a model
to explain the factors that drive species richness in isolated natural communities.

Their theory explaining the dynamics of species immigration, extinction, survival, and
evolution in these enclosed microcosms promised a new approach for better
understanding and managing the natural world. A scientific revolution was underway.

Possibly the most important aspect of the theory of island biogeography is the
mathematical formalization of a simple species-area relationship as a fundamental
paradigm in biogeography. Today, this platform allows continued insights and integration
between a multitude of disciplines that makes synthetic biogeography the new standard
(Warren et al., 2015; Santos, Field ¢» Ricklefs, 2016; Patifio et al., 2017). Here, inspired
by the potential of diverse data sets within the framework of island biogeography theory we
aim to better understand the factors that account for the given diversity across islands and
what can create a set of distinct island worlds even within an archipelago.

The islands of the Gulf of California, Mexico are a powerful test bed for MacArthur and
Wilson’s theory, arguably as important as the Galapagos (Case & Cody, 1983a). The islands
occur in the arid Sonoran Desert and exist along a wide gradient of island size and
geologic origin. Nearly every way to be an island (landbridge, oceanic, recent, old, large
small, etc.) is represented in the Gulf of California. Likewise, the marine environment
contains some of the highest primary productivity values in the world (Douglas et al,
2007), presenting a striking contrast of arid lands in the midst of marine abundance and
diversity.

Utilizing a robust data set from early expeditions that surveyed the biological richness of
the gulf islands across taxa (Townsend, 1916; Johnston, 1924; Gentry, 1949; Lindsay, 1955;
Felger, 1966; Lindsay, 1966), Martin Cody and Ted Case organized in 1977 a symposium
on the islands of the Gulf at the University of California, Los Angeles. From the papers
presented, they edited a seminal book titled Island Biogeography in the Sea of Cortez
(Case & Cody, 1983a). In that volume they underscored the great biological value of the
gulf islands as a model system. They also acknowledged that, apart from the equilibrium
between immigration and extinction as the major factor describing insular biodiversity,
other processes such as interspecific interactions or historical legacies could be equally or
more important. In particular, they proposed two areas for improvement of the theory
(Case & Cody, 1983b).

Firstly, Case ¢» Cody (1983b), as others have since (Warren et al., 2015), questioned the
random colonization hypothesis; namely, the view implicit in the equilibrium model
that islands are simple, small pieces of the mainland providing similar habitats and
resources over a circumscribed area. Small islands, in particular, have their own

characteristic environments and interactions with the surrounding ocean waters often

Wilder et al. (2019), Peerd, DOI 10.7717/peer|.7286 2/23


http://dx.doi.org/10.7717/peerj.7286
https://peerj.com/

Peer/

deviating from the expected positive species-area relationship (Whitehead & Jones, 1969;
Barrett, Wait & Anderson, 2003).

Because the species-area model is strongly based on a species accumulation function, it
implicitly treats all species from the pool in the continental source as having the same
probability of colonizing an island of any size. MacArthur & Wilson (1967: 56) put forward
a random colonization hypothesis stating that, “in fact, since all species are equally
probable, the S species on the first island are a random sample of the P available [from the
source].” As discussed by Case ¢» Cody (1983b) and more recently Santos, Field ¢ Ricklefs
(2016) and Patifio et al. (2017), this may be a somewhat unrealistic assumption,
especially in small islands that have a very high perimeter-to-area ratio and are highly
influenced by ocean dynamics (Polis et al., 1997; Anderson ¢ Wait, 2001). Clearly, most
continental species cannot thrive in the extreme maritime environment of small oceanic
islands, and the process of colonization in these islands may be driven by other factors
differing significantly from the assumption of random colonization in the equilibrium
model.

Case and Cody’s second concern derives from the first one. Because the equilibrium
model of island biogeography assumes that island colonization is basically a random
species accumulation process, it pays little attention to the problem of species composition
on the different islands. With great intellectual honesty, MacArthur ¢» Wilson (1967: 56)
conceded that “knowledge on the number [sic] of species on islands of the same
area [...] can provide an idea of the degree to which equilibrium has been approached.
So far extra knowledge of the names [sic] of the species has been wasted.” If the
environment of small islands is fundamentally different from that of the mainland, then
species colonizing small islands will form a distinct assemblage that can be quite different
from those found on the mainland. Classifying islands simply by the number of species
found there could hide an important part of the evolution and dynamics shaping island
biotas. All insular species are not equal, as implied by the immigration and extinction
curves used in the equilibrium model. Looking in some detail at the composition of the
biota on different islands may provide an interesting means of evaluating the true nature
of the species accumulation process at different spatial scales.

This paper follows from these two observations of Case and Cody and recent reviews
upon the 50th anniversary of MacArthur and Wilson’s publication for next steps in better
understanding the origin of island diversity. Based on over a century of comprehensive
plant collecting in the Gulf of California Midriff Islands (Felger, Wilder ¢ Romero-Morales,
2012; Wilder, 2014; Appendix S1), we revisit the explanatory power of the theory of island
biogeography to determine the factors driving species diversity on the islands. We focus
first on species numbers, using regression methods to understand the influence of island area
and of other factors such as pre-historic human presence, habitat diversity, topography,
distance to the mainland, island type (oceanic vs. landbridge), precipitation, and seabird
dynamics on total species richness. Second, we examine the floristic composition of
the islands using community ecology methods to understand the influence of different
factors on the species assemblages present on each island. We focus our attention on plants,
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Figure 1 Midriff Islands of the Gulf of California, Mexico. The 100 m bathometric line indicates
approximate coastline at the last glacial maximum. Photos by Wilder except Isla San Esteban by Felger
and Isla Rasa by Fulvio Eccardi. Gulf of California DEM and hill shade GIS layers provided by Scott
Bennett and satellite imagery courtesy of NASA© 2010. Inset regional map by Cathy Moser—Marlett.
Full-size K&l DOT: 10.7717/peerj.7286/fig-1

the majority of which are readily dispersed, fairly persistent (Case ¢» Cody, 1987), and
responsive to short- and long-term environmental conditions.

MATERIALS AND METHODS

Study area: the Midriff Islands

The Midriff Islands in the Gulf of California, Mexico (Fig. 1) are an isolated, arid, and
long-inhabited archipelago. This set of 14 islands that span the Gulf of California, or Sea of
Cortés, from the Baja California peninsula to the Mexican mainland occur within the
Central Gulf Coast subdivision of the Sonoran Desert (Shreve, 1951). The islands range
in size from 0.2 km? (Isla Cholludo) upward to 1,223 km? (Isla Tiburén, the largest island
in Mexico), reaching highest elevations of 1,316 m on Isla Angel de la Guarda and 885 m
on Tiburén (Felger, Wilder ¢» Romero-Morales, 2012). They have been inhabited or
visited by the sea faring and hunter-gatherer Comcaac (Seri people), or their ancestors or
predecessors, for millennia (Felger ¢» Moser, 1985; Bowen, 2000). Geologically, the Gulf of
California dates to ca. six Ma (Ledesma-Vizquez ¢ Carrefio, 2010) and is one of the
world’s most productive oceans (Douglas et al., 2007). Today the islands are a UNESCO
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World Heritage site, a Mexican natural protected area (DOF, Diario Oficial de la
Federacion, 2000), and since the 1950s uninhabited. For a comprehensive review of
the Gulf of California islands, see Case, Cody ¢» Ezcurra (2002). Collections were made
under Mexican federal collecting permit NOM-126-SEMARNAT-2000 issued to

Dr. Ezcurra.

Species-area model

Like many other scaling phenomena in biology, the relationship is usually described by a
power function of the form S = kA®, where S is the number of species on an island,

A is island area, z is the power exponent, and k is a scale coefficient. In practice, the
species-area curve is an accumulation function similar to those used to evaluate the
completeness of herbarium collections (Soberdn ¢ Llorente, 1993) and is based on Preston’s
canonical model (Preston, 1962). The theory on biological scaling has dramatically expanded
since 1967 (Brown ¢ West, 2000), but the basic species-area model, based on

MacArthur and Wilson’s “equilibrium theory” of island biogeography is still one of the most
robust models of ecological theory (see Gould, 1979 for a review).

To estimate the power coefficient z of the area—diversity relationship for the Midriff
Islands, we used generalized linear models (GLM), a novel approach in species-area
relationships. Because our dependent variable, the number of species on each island, is a
count variable that is expected to have a Poisson error distribution, we used Poisson
regression (also known as log-linear regression), in which the fit of the model to the data is
measured as a log-likelihood function with a > distribution of the error (McCullagh ¢
Nelder, 1989).

The derivation of our model is as follows (see Appendix S2 for an alternative
derivation): The species-area model for islands S = kA® can be rewritten in log-log form:
log S =log k + z log A. This is a linear model where log k, the intercept, can be also
expressed as a constant parameter b = log k. Raising the exponent of both sides we get:
S = ¢l?+= 18 4 4 Jog-linear function in which the count variable S is expressed as the
exponent of the linear function b + z log A. The GLM algorithm identified the values of b
and z that minimize the error of the fit. The error in turn is calculated as a log-likelihood
deviance function: e =2 §; log(Si / Si that is numerically convergent to the more
familiar chi-squared statistic: X*> = > (Sl- — Si)z/gl} (in both equations, S; is the number
of species observed in island i, and ; is the number of species predicted by the model
for island ). In short, we fitted a Poisson GLM to the species richness of the islands, using
the logarithm of the area as the predictor. The slope and standard error of the fitted
function gave us the value of z and its error.

Because in a Poisson model the variance is equal to the mean, each individual Chi-
squared error term [(Si -8/ \/S-,} is distributed as a normal-distribution deviate
[z = (x — n)/0] that can be tested against the critical values of the Normal curve (i.e.,
errors are Pearson residuals, see Duffy, 1990). Using this property, we were able to identify
islands that had significantly more or significantly fewer species than predicted by the
equilibrium model of island biogeography.
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Predictors of species richness

After confirming that some islands depart significantly from the species-area model, we
tested additional predictors of species richness for the archipelago (Table 1), using a
step-wise process on the same GLM procedure. The predictors were: (a) presence of
archeological artifacts (yes or none found) as a surrogate for prehistoric human presence,
(b) habitat diversity (or number of distinct habitats; a number between 1 and 14),

(c) topography (subtle, moderate, or rugged relief), (d) distance to the nearest mainland,
and distance to the nearest island (in km), (e) island type (oceanic or landbridge),

(f) seabird dynamics (presence/absence of nesting seabirds), and (g) precipitation. Some of
our predictors were continuous variables while others were categorical.

Data for the predictors are as follows (full sources can be seen in Table 1): (a) The presence
of humans on the islands was incorporated into our biogeographic analysis via
archaeological investigations undertaken on all islands in question (Bowen, 2009).

(b) While area and habitat diversity are correlated (Sfenthourakis e Triantis, 2009), and
hence not truly independent, they may jointly have a significant additive effect

(Hortal et al., 2009). For example, small islands can have a high degree of topographic
complexity despite their size. In Sonoran Desert ecosystems, topographical diversity is
strongly related to habitat and plant diversity (Burquez et al., 1999). Following

Hortal et al. (2009) we defined habitat diversity as the number of physiognomic
vegetation types on each island as described by Felger, Wilder ¢» Romero-Morales (2012).
(c) Topography was taken into consideration by assigning each island to one of the three
categories of relief based on highest elevation and our experience on the islands.

(d) Isolation by distance was taken into account via an island’s proximity to the nearest
mainland (Baja California peninsula or Sonora) and in several cases neighboring large
island(s) that may serve as sources for immigration. (e) Geologic history of the island
was incorporated via island type: landbridge or oceanic. (f) Given the preponderance and
importance of nesting seabirds in the Gulf of California, especially on small islands
(Velarde et al., 2005), we classified each island as a seabird island if there is annual
presence of over ca. 5,000 breeding individuals and characteristic guano white-washed
rocks and soil following Anderson ¢ Polis (1999). (g) Because reliable and long-term
climatological or meteorological data do not exist for the Midriff Islands, we used
statistical extrapolations of long-term precipitation data from six coastal meteorological
stations maintained by the Mexican government. Three stations were selected on the
Gulf coast of Baja California (N-S: San Felipe, Bahia de los Angeles, and Santa Rosalia,
Ruiz Corral et al., 2006a, 2006b) and three from the Sonoran coast (N-S: Puerto Libertad,
CONAGUA, 2010; Bahia de Kino, Ruiz Corral et al., 2005; and Guaymas, Garcia et al,
1973). Precipitation for individual islands was calculated using linear interpolation between
the nearest three stations to each island.

Island plant diversity was modeled using GLM in R (R Core Team, 2016). At each step of
the regression analysis we tried all the variables that could be added, then selected the best
fit using Akaike’s Information Criterion. We continued to add variables until no
variable could significantly improve the fit.
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Table 1 Factors of diversity.

Island "Number of “Area ’Habitat “Topography ’Distance “Island type  “Precipitation “Seabird °Archaeological
plant species (km®)  diversity (km) (mm) rookery  evidence

Tiburén 19349 1,223 14 Rugged 1,70 ®Land bridge 119 %No Yes
Angel de la 16217 936 10 Rugged 1212 *Qceanic 65 8 No Yes

Guarda
San Esteban 114 41 Rugged *11.64, 16.85, 345  *“Oceanic 114 8No Yes
San Lorenzo 1dgs 33 Moderate 5416.36 %dOceanic 91 84No Yes

(San Lorenzo

Sur)
Las Animas legs 426 1 Moderate >€16.36 %¢Qceanic 88 8eYes Yes

(San Lorenzo

Norte)
Nolasco 158 345 5 Rugged 14.61 Oceanic 186 ¥No None known
Martir 1829 2.67 3 Moderate 839,09, 50, 50 %8Qceanic 111 88Yes None known
Alcatraz thsy 1.44 4 Moderate .01 " andbridge 140 8hyes Yes
Partida Norte ~ ''18 136 2 Moderate *18.30, 12.18, 17.88  ®Oceanic 87 Siyes Yes
Datil 101 125 4 Rugged %11.94 Landbridge 121 %No Yes
Salsipuedes kg 1.16 1 Subtle k1,52, 19.21 *kOceanic 87 8kyes Yes
Rasa 14 0.68 1 Subtle 0.79 “Oceanic 88 8Yes None known
Patos Img 0.45 2 Subtle M7 45, 8.82 *™Landbridge 126 8myes None known
Cholludo "31 0.2 3 Moderate >"1.09 ®Landbridge 121 8Yes None known

Notes:

The 14 islands considered, number of plant species and categorization or metrics for the eight factors of diversity tested.

Islands are listed in order of decreasing area.

! Flora totals as seen in Appendix S1 are from: 1aFelger, Wilder & Romero-Morales (2012) and Wilder (2014); ®Aforan (1983), Rebman (2010), and Wilder (2014); 1chlger,
Wilder & Romero-Morales (2012); *“Rebman, Ledn de la Luz & Moran (2002) and Wilder (2014); “*Rebman, Ledén de la Luz ¢ Moran (2002), and Wilder (2014); lfFelger,
Wilder & Gallo-Reynoso (2011), Felger, Wilder & Romero-Morales (2012); 18 Wilder e Felger (2010), Felger, Wilder & Romero-Morales (2012), and Wilder (2014); thelger,
Wilder ¢ Romero-Morales (2012); “"Rebman, Leén de la Luz & Moran (2002), and Wilder (2014); UFelger, Wilder & Romero-Morales (2012); *Rebman, Leén de la Luz &
Moran (2002), and Wilder (2014); “Velarde et al. (2014); lmFelger, Wilder ¢ Romero-Morales (2012); “"Felger, Wilder ¢ Romero-Morales (2012), and Wilder (2014).

? Island size from Murphy et al. (2002).

* Habitat classes that affect the 14 vegetation types found on the Midriff Islands (Felger, Wilder & Romero-Morales, 2012): ridges, arroyos, canyons, permanent springs
and ephemeral tinajas, coastal bajada, foothill bajada, peaks above 500 m, coastal area and salt flats, flats, north-facing slopes, esteros, sea cliffs, valleys, dunes.

* Topography classes are based on the authors understanding of the relief and elevation (Murphy et al., 2002; Felger, Wilder ¢ Romero-Morales, 2012) of each island; they

_ capture the complexity, or lack there of, of insular terrains.

” Distances (Murphy et al., 2002) to nearest large land body: %3Sonora; 'SbPeninsula “Tiburén, San Lorenzo, Peninsula; **Peninsula; **Peninsula; *Sonora; *¢Tiburén,
Sonora, Peninsula; *"Sonora; *'Rasa, Angel de la Guarda, Peninsula; > Tiburén; **Las Animas, Peninsula; *'Peninsula; >™Tiburén, Sonora; > Tiburén.

© Classification of landbridge or oceanic based on geologic origin information from Carreiio ¢ Helenes (2002; except where stated otherwise), and age since last isolation as
indicated: 66‘Faulting, uplift, and erosion, ca. 6,000 ya (Wilcox, 1978; Lambeck ¢~ Chappell, 2001; Davis, 2006; Felger, Wilder ¢» Romero-Morales, 2012); b Block Faulting,
3.3-2 Ma (Aragén-Arreola & Martin-Barajas, 2007; Nagy ¢ Stock, 2000; Stock, 2000); %Volcanic (Desonie, 1992), 2.9-2.5 Ma (Desonie, 1992); “‘Block Faulting,
3.3-2 Ma (Aragon-Arreola ¢ Martin-Barajas, 2007; Nagy & Stock, 2000; Stock, 2000); **Block Faulting, 3.3-2 Ma (Aragon-Arreola & Martin-Barajas, 2007; Nagy &
Stock, 20005 Stock, 2000); *Faulting, 3-2 Ma (Felger, Wilder ¢ Gallo-Reynoso, 2011); ®€Volcanic, no age data is available but is presumably a similar age as San Esteban;
"Faulting, uplift, and erosion, ca. 6,000 ya (Wilcox, 1978; Lambeck ¢& Chappell, 2001; Davis, 2006; Felger, Wilder ¢ Romero-Morales, 2012); *Volcanic, no age
data is available but is presumably similar to adjacent Salsipuedes; ®Faulting, uplift, and erosion, ca. 6,000 ya (Wilcox, 1978; Lambeck ¢ Chappell, 2001; Davis, 2006;
Felger, Wilder ¢ Romero-Morales, 2012); ®Block Faulting, 3.3-2 Ma (Aragén-Arreola ¢ Martin-Barajas, 2007; Nagy ¢ Stock, 20005 Stock, 2000); ®Volcanic, 10,000 ya
(Velarde et al., 2014); 6rnFaulting, uplift, and erosion, ca. 6,000 ya (Wilcox, 1978; Lambeck ¢ Chappell, 2001; Davis, 2006; Felger, Wilder ¢ Romero-Morales, 2012);

~ “"Faulting, uplift, and erosion, ca. 6,000 ya (Wilcox, 1978; Lambeck ¢& Chappell, 2001; Davis, 2006; Felger, Wilder ¢ Romero-Morales, 2012).

" Precipitation values are based on an extrapolation from long-term precipitation data from six coastal meteorological stations maintained by the Mexican government.
See methods section for more detail.

8 Seabird usage based on cumulative knowledge as identified: SaCody & Velarde (2002); 8l’(,‘ody & Velarde (2002); 8°Cody & Velarde (2002); *considered to have a large
colony of seabirds (Sanchez-Piriero ¢ Polis, 2000) where nesting is confined to the northern third of island, primarily pelicans (Dan Anderson, August 16, 2014, personal
communication); **nesting is island wide, primarily pelicans (Dan Anderson, August 16, 2014, personal communication); *not considered a seabird island
(Felger, Wilder & Gallo-Reynoso, 2011; Dan Anderson, August 16, 2014, personal communication); 88, significant seabird island with eight breeding seabirds species,
especially blue footed and brown boobies (Tershy ¢ Breese, 1997); **southwestern portion of island supports 11 breeding species, especially Double-crested Cormorants
(Duberstein et al., 2005); 81signiﬁcant seabird island (Sanchez-Piriero ¢ Polis, 2000) with at least five breeding species, especially Craveri’s Murrelet (Velarde et al., 2005),
Least Storm-Petrel (Velarde, 2000), occasionally brown pelicans (D. Anderson and T. Bowen, August 16, 2014, personal communication), and the largest population of
fishing bats (Myotis vivesi) in the Gulf of California (Maya, 1968; Velarde et al., 2005); ¥not considered a seabird island (Dan Anderson, August 16, 2014, personal
communication); *nesting over the total island, but quite spotty (D. Anderson, August 16, 2014, personal communication), we follow (Sanchez-Pifiero ¢ Polis, 2000) in
designating this a seabird island; *'a significant seabird island (Sanchez-Pifiero ¢ Polis, 2000) especially Heermann’s Gull, Elegant Terns, and Royal Terns (Velarde, 198%
Cody & Velarde, 2002; Velarde et al., 2014); *™Nesting over the total island, sporadic (D. Anderson, August 16, 2014, personal communication), and perhaps not
recovered from vegetation removal for guano harvesting in 1946 (Felger, Wilder ¢> Romero-Morales, 2012; Dan Anderson, August 16, 2014, personal communication);
80Total island, but spotty within cardén forest (D. Anderson and Enriqueta Velarde, August 16, 2014, personal communication).

? Presence of archaeological remains is based on Bowen (2009).

Wilder et al. (2019), Peerd, DOI 10.7717/peer|.7286

7/23


http://dx.doi.org/10.7717/peerj.7286/supp-1
http://dx.doi.org/10.7717/peerj.7286
https://peerj.com/

Peer/

Species composition

To examine patterns in plant species composition across the 14 islands, a checklist of the
flora of the Midriff Islands (Wilder, 2014; Appendix S1) was converted into a 476 (species) x
14 (islands) presence-absence matrix. Both species richness and species composition
analyses include non-native species (only 12 non-native taxa occur in the flora). A non-
standardized principal component analysis (PCA) was conducted on this matrix. Jackson’s
(1993) broken-stick test was used to determine significant axes. To interpret the

floristic variation captured by each axis in terms of external driving variables, we regressed
the site scores of each axis against the same seven predictors (a—g) used for species
richness. Five small islands were omitted from the distance-to-the-source analysis because
the majority of their flora is formed by widespread coastal halophytes that obscure other
patterns.

Using Noy-Meir’s (1973) divisive polythetic classification method, we partitioned the
species along the first two significant PCA axes into floristic groups with minimum
intragroup and maximum intergroup variation, numerically searching for partition
thresholds that minimized intragroup variance. To visualize the distributional similarities
of the floristic assemblages obtained, the centroids of these groups in the first two PCA axes
were then clustered into a hierarchical dendrogram using the procedure hclust in R
with average-linkage clustering and Euclidean distance (R Core Team, 2016).

Following Baselga (2010) we performed an evaluation of floristic nestedness on the island
data to test whether small islands contain a flora that is distinct from that of the large islands, or
if, alternatively, the small island flora is a nested subset of that in the large islands. We also
tested whether the flora of small islands, if nested, is a random subset of the larger islands or a
non-random collection of large island species. For this analysis, we used Monte-Carlo
simulations randomly extracting two vectors with a probability of containing a mean of 19
species per simulated island, and comparing the Sorensen similarity among them. We did
this 1,000 times, and the mean similarity and standard deviation of the simulated island
pairs was compared to the true mean similarity among small islands in our data set.

Finally, to test whether certain families were overrepresented in some islands, we used a
X? analysis of the islands x families matrix with the number of species present in each
family and each of the Midriff Islands. Probability values were subject to a Bonferroni
correction to adjust for bias in multiple comparisons. Family classifications follow the
Angiosperm Phylogeny Group IV system (Angiosperm Phylogeny Group, 2016) and recent
work by Stevens (2019), reflecting current knowledge of evolutionary relationships.

RESULTS

Predictors of species richness

The species-area model (Fig. 2) yielded a Poisson regression line with r* = 0.85 and a slope
z =0.303 (s.e. = 0.01). As is frequently the case in island ecosystems, the value of the
estimated species-area exponent (0.303) was significantly higher than 0.263, Preston’s
canonical value expected for random species accumulation in terrestrial ecosystems
(t=4.0,d.f. 12, P = 0.0009). The analysis of the residuals identified four islands with more
plant species than expected based solely on their area: Tiburdn, Datil, Alcatraz, and
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Figure 2 Plant species-area relationship for the Midriff Islands, Gulf of California, Mexico. Both axes
are log transformed. The slope of the line (z) is 0.303 (s.e. + 0.01) with an * = 0.85. Islands with sig-
nificantly more species indicated by black circles, islands with significantly less species denoted by open
circles, and islands with expected plant species diversity marked with gray circles.
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Cholludo, all part of the Tiburén landbridge archipelago. Six islands were shown to have
significantly less species than expected: Angel de la Guarda, San Pedro Mdrtir, Partida
Norte, Patos, Salsipuedes, and Rasa. Apart from Angel de la Guarda, each of these
species-poor islands can be characterized as bird guano islands. Furthermore, all of them,
except Patos, are true oceanic, not landbridge, in their geologic origin. Finally, four other
islands, San Esteban, Las Animas, San Lorenzo, and Nolasco fell within the predicted
range of the species area curve (Table 2).

After fitting the effect of island area on species richness, four additional predictors
accounted for a significant amount of the residual variation (Table 3): (1) habitat diversity,
34%, (2) seabird rookery, 23% (3) island type (oceanic vs. landbridge), 21%, and
(4) topography, 14%. Together, all these factors accounted for 92% of the observed variation
in species richness, and the residual variation (8%) was not significant, matching the
assumptions of a random Poisson distribution. Two other factors, distance to the source and
human presence, had no significant effect in accounting for the observed variation.

Species composition

The PCA analysis had two significant axes as determined by the broken-stick distribution
model (Jackson, 1993). The first axis explained 41% of the overall floristic variation in
the dataset and the second 19% (broken-stick expected values were 23% and 16%,
respectively). The PCA simultaneously analyzes the relationship between islands, each
with their component species (Fig. 3), or the distribution patterns of species among islands
(Fig. 4). When islands are assessed, the first axis is strongly correlated with species richness
(r* = 0.99; Fig. 3B), while the second axis displays a floristic-composition gradient in
the large islands from west (Baja California, Angel de la Guarda) to east (Sonoran mainland,
Tiburén; ¥* = 0.74; Fig. 3C); the floristic composition of the small islands was independent
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Table 2 Pearson residual analysis for plant species-area relationship.

Island Area (km?) Number of  Expected S Pearson P
species (S) residual
Tiburén 1,223 349 294 3.25 0.0006
Angel de la Guarda 936 217 271 -3.30 0.0005
San Esteban 41 114 105 0.86 0.1951
San Lorenzo (San Lorenzo Sur) 33 85 99 -1.36 0.0866
Las Animas (San Lorenzo Norte) 4.26 45 53 -0.96 0.1692
Nolasco 3.45 58 50 1.18 0.1192
Martir 2.67 29 46 -3.24 0.0006
Alcatraz 1.44 54 38 2.57 0.0051
Partida Norte 1.36 18 37 -3.18 0.0007
Datil 1.25 101 37 10.67 0.0000
Salsipuedes 1.16 18 36 -2.96 0.0015
Rasa 0.68 14 30 -2.97 0.0015
Patos 0.45 14 27 -2.47 0.0067
Cholludo 0.2 31 21 2.19 0.0142
Note:

Pearson residual scores and probabilities for islands with significantly more or fewer species than expected by chance are
shown in boldface.

Table 3 Analysis of variance.

Source of variation x> deviance d.f. P r* r2 (removing effect
of area)
Area 936.0 1 <0.0001 0.85
Habitat diversity 57.8 1 <0.0001 0.05 0.34
Seabird rookery 38.1 1 <0.0001 0.03 0.23
Island type 34.5 1 <0.0001 0.03 0.21
Topography 24.1 2 <0.0001 0.02 0.14
Residuals 13.2 7 0.07 0.01 0.08
Total 1,103.6 13
Note:
fl{levseurlstls t;.or the factors of diversity identified to significantly account for the variation from expected plant species

of distance to the source. This second PCA axis was also correlated with precipitation
(r=-0.61, P = 0.04) highlighting the fact that the Baja California flora west of the Gulf occurs
in drier environments than the Sonoran flora in the east.

When the distribution patterns of the 476 plant taxa are analyzed, five distinct groups of
species can be recognized from their loadings in the first two PCA axes (Fig. 4): small or
single island species, generalist species, and large-island species can be distinguished
along axis 1, while Sonoran-side species, and Baja-side species clearly separate along axis 2.

There was a high level of nestedness of the small island flora in the large islands,
especially with Tiburén where Baselga’s (2010) Bngs was 0.68-0.80. Indeed, with the
exception of two taxonomically suspect species (an undescribed Mammillaria on Datil and
Cholludo islands and Johnstonella grayi var. cryptochaeta in Salsipuedes, reported in
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Figure 4 Individual species results of Principal Component Analysis (PCA). (A) Species PCA, the 476
plant taxa of the Midriff Islands distributed along PCA axes 1 and 2. Coding for the five species categories
is based on the floristic checklist for the Midriff Islands (Wilder, 2014). (B) Species divisive dendrogram,
relationship of the five species categories identified in (A). The bars in each branch of the dendrogram
show the residual within-group variance. Full-size K&] DOT: 10.7717/peer;j.7286/fig-4
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Case ¢ Cody (1983a) but not supported by herbarium specimens), all the rest of the small
island flora is nested within the plant list of the large islands. Under the hypothesis of
random colonization from the large islands, the Monte—Carlo test predicted a mean
Sorensen similarity of 0.04 (s.e. = 0.04) between small islands, while the true mean
similarity between small islands is almost ten times higher (0.34 se + 0.02). The significant
difference (¢t = 6.7, d.f. 3, P = 0.003) between the observed similarity among small islands
and the much lower value predicted under the random colonization hypothesis
endorses the idea that the group of species colonizing small islands is not a random subset
of the flora of the larger islands but rather part of a smaller group of species that are able to
tolerate the harsh environmental conditions of small islands, like saline sea-spray and
eutrophic guano substrates.

The Cactaceae showed a significantly higher richness on the smaller islands compared to
the rest of the flora (X* = 71.9, d.f. 13, P < 0.0001). Most of the small bird-guano islands
(Alcatraz, Cholludo, Las Animas, Patos, Rasa, Salsipuedes, and San Pedro Martir) showed a
very high proportion of cacti and halophytic succulents (as defined by Wilder, Felger ¢
Romero-Morales (2008)) pooled together, which differed significantly from the overall
pattern of species richness (X* = 44.8, d.f. 13, P < 0.0001). The family Polygonaceae had no
species on small and medium islands and only one species (Eriogonum inflatum,
the common desert trumpet) on large islands (Tiburén, Esteban, and San Lorenzo), but eight
species on the otherwise species-poor Angel de la Guarda, a significantly higher number
compared to the other large islands (X* = 13.2, d.f. 3, P = 0.004).

DISCUSSION

The theory of island biogeography, especially when analyzed with diverse data sources,
continues to serve as a base for understanding patterns of biodiversity. We were able to
expand the standard analyses to (1) identify islands that deviate from the model’s
predictions and test factors beyond area that have an incidence on species diversity, and
(2) explore the composition of the individual island floras to better understand their
origin. Despite large-scale transformation of ecosystems in Mexico’s northwest
(Gonzdlez-Abraham et al., 2015), diversity levels of the Midriff Islands are still in
large part governed by the geologic legacy of the opening of the Gulf of California
(Dolby et al., 2015).

Influences on species richness
Plant species richness patterns among the islands confirms the well-established
species-area power function. The ecological heterogeneity of the islands, expressed both as
the number of different habitats and topographic variation, accounted for the largest
proportion of variation in species richness not accounted by area alone (Table 3).
The combination of these two factors in supporting diversity has been long recognized
(Darwin, 1860; Preston, 1962; Hortal et al., 2009), including prior analyses for these islands
(Felger & Lowe, 1976; Cody, Moran ¢ Thompson, 1983).

The geologic history of the Gulf of California is reflected in the island type: oceanic
islands were either formed from the eruption of deep underwater volcanoes or were
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derived from segments of the peninsular crust that became separated from the peninsula
by deep faults millions of years ago. In contrast, landbridge islands are really topographic
mounds separated from the coast by shallow channels less than 100 m deep, which
were connected to the mainland during most of the Pleistocene glaciations and only
became isolated toward the end of the last glacial period, some 10,000 years ago
(Graham, Dayton & Erlandson, 2003; Fig. 1). In agreement with the region’s geologic
history, landbridge islands have significantly more species than oceanic ones.

An interesting case study is Isla Angel de la Guarda, an extremely arid oceanic island
rifted off the Baja California peninsula ca. two Ma (Nagy ¢ Stock, 2000). Angel harbors
only 217 species, 54 less than predicted by our species-area model and significantly less
than the 349 species in the similarly-sized landbridge Tiburén Island that receives
almost twice as much rainfall (Felger, Wilder ¢ Romero-Morales, 2012). The effects of
isolation on Angel de la Guarda are also evident in its relatively high level of endemic reptiles,
rodents (Lawlor et al., 2002), and plants (Moran, 1983).

Although the geologic nature of the island (landbridge vs. oceanic) and xeromorphic
gradient are strongly related to species richness, the distance to the mainland per se did not
show a significant relationship with plant species richness. This was true even among
oceanic islands (Table 3), likely because of the narrowness of the Gulf. The importance of
distance in the Gulf of California is taxon-dependent and varies with colonization and
persistence rates (Case ¢ Cody, 1987). Taxa that have high colonization rates, such as
birds, show few effects of insularity (Cody ¢ Velarde, 2002), while mammals and reptiles
are less dispersive and more often evolve unique forms in isolation (Soulé ¢ Sloan, 1966;
Lawlor et al., 2002). Plants, which also have high colonization rates and often possess
long distance dispersal ability, show a relatively low level of endemism in these islands,
except among Cactaceae (Rebman, 2002).

Finally, the presence of seabird rookeries explains a significant amount of the variation
in species numbers: small guano islands harbor less species than similarly-sized islands
that lack rookeries. Recent studies have shown that excess nitrogen can significantly reduce
the diversity of terrestrial ecosystems (Simkin et al., 2016).

The relatively high value of the species-area exponent (z) is the statistical result of the
existence of many small guano islands with low species richness. The species composition
of these small islands is quite different from that of larger islands or from that of the
mainland source (see next section). Porous land-sea boundaries facilitate the movement of
nutrients from the ocean into the islands. The importance of marine inputs in regions
with high primary productivity on small islands is accentuated by their inherent high
perimeter-to-area ratio (Anderson & Wait, 2001; Talley, Huxel & Holyoak, 2006).
Accordingly, marine subsidies (in this case guano), have a disproportionate importance as
a driver of biological diversity on small islands (McCauley et al., 2012).

Influences on composition

The small bird islands in our analyses are linked to the productive waters of the Gulf of
California through a long chain of ecological interactions. These isolated islands are free of
predatory mammals (Lawlor et al., 2002), which combined with shallow relief provide
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ideal habitat for some of the largest aggregations of breeding seabirds in North America
(Velarde et al., 2005). Seabird diets consist mostly of pelagic fish that occur in abundance
in the Midriff region and feed on microscopic plankton in extremely productive
upwelling zones (Velarde, Ezcurra & Anderson, 2013).

Seabirds deposit copious amounts of marine derived nutrient rich guano, high in
nitrogen (N) and phosphorus (P; Hutchinson, 1950), in much greater concentration on
bird islands than on non-bird islands in the Gulf of California (Anderson ¢ Polis, 1999).
The presence of elevated levels of N and P on seabird islands act as a strong filter that
selects for specific plant species, as shown in the high mean Sorensen similarity value of
small islands and the identification of a clustering of small/single island species in the
PCA and species cladogram analyses (Fig. 4). It is primarily these, and only these, species
that occur on the small islands, resulting in the depressed plant diversity observed on these
islands. However, the plant species that can tolerate these nutrient loads, such as cacti
and halophytic succulents, occur in greater proportion and remarkable abundances
(see the insets of Cholludo and San Pedro Martir islands in Fig. 1). The percentage of
succulent and halophilous flora of bird islands in the Midriff region is relatively greater
than that on large islands, suggesting a difference in establishment ability within the flora
and providing an outstanding example of marine-based nutrients controlling terrestrial
diversity patterns in small islands.

Analysis of the insular floras as a matrix reveals the importance of the proportional
distance of the larger islands to either the Baja California peninsula and the Sonoran
mainland, as well as the E-W precipitation gradient of the Midriff as a driver of species
composition (Felger, Wilder ¢ Romero-Morales, 2012). The majority of the species
encountered on Angel have peninsular affinities and are adapted to extreme aridity. Persistent
cold-water upwelling and location of Angel on the western edge of the North American
monsoon, as well as the southeastern edge of Pacific-derived winter storms result in the
western Midrift Islands being the most arid portions of the Gulf of California. In addition,
ca. 30 plant taxa characteristic of the northern mediterranean region of the Peninsula reach
their southern limit on or near Angel (Moran, 1983). This is exemplified in our analysis
by the preponderance of the buckwheat family Polygonaceae, a family that is strongly
associated to the California Floristic Province, on Angel and its near absence on Tiburén.

The human dimension

Humans have been a broad-scale determinant of species diversity on islands worldwide,
often through habitat disruptions and species extinctions (Burney & Flannery, 2005)
and cultural use (Bye & Linares, 2000; Heinsohn, 2003). Portions of the world thought to be
pristine, without human modification, have been shown to be otherwise (Denevan, 1992;
Gémez-Pompa & Kaus, 1992). While our analysis is limited to the presence/absence of
archaeological elements on the islands, careful ethnographic work with the Comcaac (Seri
people) on the coast of Sonora has helped illuminate their profound interaction with the
island and coastal environments (Felger, 1976; Nabhan, 2003; Wilder et al., 2016).

The consumption, utilitarian use, harvesting, and transport of plants across the region and
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between islands by the Comcaac and or their ancestors has been shown repeatedly (Felger ¢
Moser, 1985; Nabhan, 2002).

The unique culture of the Comcaac grew and evolved in the Gulf of California, and is
endemic to the region. Their language, Cmiique Iitom is a language isolate (Moser ¢
Marlett, 2010) and their knowledge of the natural world is extensive (Felger ¢ Moser, 1985;
Marlett, 2014). They lived in and visited the larger Gulf of California region for thousands
of years, with archaeological evidence of their presence on many islands in the Midriff
(Table 1; Bowen, 2000, 2009). Yet, any environmental changes wrought by the Comcaac
have been integrated with and are indistinguishable from the background ecological
dynamics of the Midriff Islands. This is most likely because human population pressure
was low and varied from ca. 180-3,500 individuals through time (Nabhan, 2002), limited
by the scarcity of fresh water (Felger & Moser, 1985).

One manifestation of the non-altered environment of the Midriff Islands is the low
frequency of non-native plant species (Felger ¢ Moser, 1985; Felger, Wilder &
Romero-Morales, 2012). Just 2.5% (12 species) of the Midriff Island flora is non-native
(Wilder, 2014), relative to non-native floristic compositions of 14% among the Baja
California Pacific Islands and 28% among the California Channel Islands
(Ratay, Vanderplank ¢» Wilder, 2014). The diminished presence of foreign cultures in
the homeland of the Comcaac greatly reduced the opportunities for the establishment of
non-native species.

CONCLUSIONS

Our results support what is possibly the most important tenet of the equilibrium theory of
island biogeography, namely that the power function for area predicts most of the
variation observed in species richness. We also found the power exponent z to be
significantly larger than 0.263, Preston’s canonical value, a fact that is commonly reported
in island studies. More interestingly, the analysis of the residual variation in species
richness, unexplained by the islands’ area, yielded important additional insights.

The ecological heterogeneity of the islands, expressed both as the number of different
habitats and topographic variation, accounts for much of the total variation in species
richness. Marine derived guano substrates on oceanic islands harbor fewer species than
guano-free substrates or landbridge islands. It is likely the increase in aridity in the Gulf
from east to west also plays a role in limiting diversity.

The species composition of the islands varies significantly with island area. Small islands
have a particular flora of their own, highly adapted to maritime environments and guano
deposition, and cannot be considered a random subset of the continental floras. The flora
of the larger islands, on the other hand, is strongly dependent on the continental source
and the prevailing precipitation patterns. Islands near the Sonoran coast showed a largely
Sonoran flora, while Islands near the Baja California peninsula were much drier and showed
a Baja Californian floristic assemblage.

Islands with ecological networks that function as they were operating hundreds of
years ago are rare, and islands where human presence has not irreversibly modified
the native biological diversity are scarcer yet. During the 20th century, large-scale
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settlements and extractive resource have irreversibly modified continental and
peninsular landscapes around the Gulf of California. In that perspective, the insular
biota of the Midriff Islands represents a set of relictual ecosystems, the best conserved
portion of the Sonoran Desert. Step-wise testing with modern regression methods of the
potential primary drivers of species diversity and composition in these islands allowed
us to identify the main factors controlling species richness and to establish a botanical
baseline for these important ecosystems. This knowledge, in turn, is critical in the face of
widespread extinctions and ecological chains increasingly shifting to a biodiversity-
impoverished state with reduced baselines (Dayton et al., 1998; Saenz-Arroyo et al., 2005;
McCauley et al., 2012). Taken as a whole, our data highlights the unique conservation
status of a set of desert microcosms whose biodiversity is still largely unaffected by human
action where the main tenets of insular ecology can be put to a test.
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